Bitmap2LCD can generate two different types of GLCD Fonts :
System Fonts : Fonts of the Operating System, like .TTF (True Type Fonts) , .FON
Editable Fonts : Fonts you can edit yourself (modifying the pixels) from a system font source, or Fonts you can create from scratch.
There are ANSI Fonts (system) , Unicode Fonts (system) and Editable Fonts (custom)
Choose the main menu GLCD Fonts tab, and click Enter Font Script Mode item to enter Font Creation Mode
Data Setting Parameters are located in Data tab. You can edit the values by clicking on parameter value of the parameter list, only when in Font Script Mode and with Standard Edition.
At the top of the font panel , the caption includes [Font Script Mode] when in Font creation Mode. Use the Door Icon Button to exit this mode when willing to quit.
Enter Font Script Mode
In Font Script Mode (see caption at the top) select a list of chars to export with the mouse (Orange arrow) or write or paste a list of characters into the field (blue arrow)
To delete the selected list , use the [Clr] button or the Clear Selected Chars List drop down menu item (Green arrow)
There are 3 different Font types : ANSI, Unicode or Editable (seeRed Arrow)
A right side of the font panel, there’s a field where you can define the Font Export parameters (Purple arrows) in the Data tab -> See screenshot below
For example the Font Data Structure : Raw Font or Structured Font
NOTE : With Trial/Demo Version, there’s a limitation : Only Char “A” is generated as an example !
Example : Modifying a Font Generator Parameter
Buttons
Enter Font Script Mode
convert selected List of chars to GLCD data
Exit Font Script Mode
Font Settings
The Font Script (Red Arrow) can be found in the Script (or Name.FSC) Tab of the Text editors. The script itself is not editable. The parameters can be set in the Font Panel, and the orientation of data generation and endianness at the top of the script (Blue Arrow)
The GLCD data generated can be found in the Text editor, first Editor tab on the left
Next screenshot shows a comment block at the right side that shows the character of the generated data. ( monochrome, 8 bit output only )
Bitmap2LCD is a tool for programming small Graphic LCDs in embedded systems and a programmable graphic and text processing tool.
Bitmap2LCD :: Generate International Fonts / Characters
Standard Edition Update V3.7c
There are different ways to select the Unicode characters to generate GLCD Font data.
Enter Font Script Mode ( in the GLCD Font Main Menu ) , select the Unicode mode , the font, the font Size and Unicode Block.
Select the Chars to export with the mouse inside the grid ( Are selected = Teal Color )
Generate Data
way to generate GLCD Fonts, for example when more than 256 Chars :
Enter Font Script Mode ( in the GLCD Font Main Menu ) , select the Unicode mode , the font, the font Size and Unicode Block.
Enable the Address Range Selection (red Arrow)
Enter the Start and End Hexadecimal Addresses ( From Hex and To Hex )
Generate Data
Then read the font script (see below) for the other settings to be defined first to generate Font Data : The data orientation, the endianness, the Font Size, if fixed or variable length etc…
Bitmap2LCD is a software tool for programming small Graphic LCDs in embedded systems and a programmable text and graphic processing tool.
Shades of Gray
Update V4.7b
Bitmap2LCD supports the export data arrays for grayscale Graphic LCD.
The choice is 4 , 16, 32 or 256 gray levels.
Configuration settings
Color pickers for 32, 4 and 16 shades of gray modes :
Example, in the 32 gray levels mode, the shades between the white color to the black color will output data per pixel from 0 to 31 decimal, or the opposite, from 31 to 0 decimal if you enable the Invert Grayscale Palette Parameter checkbox.
Bitmap2LCD is a software tool for programming small Graphic LCDs in embedded systems and a programmable text and graphic processing tool.
Update V3.7c
With Bitmap2LCD , you can of course write text and place symbols and glyphs inside the WORK CANVAS. by the way, Some system fonts families ARE collection of glyphs. You can find fonts on specialized websites like dafont.com and easily install them on you computer.
With Bitmap2LCD Standard Edition, you can also generate GLCD fonts to data arrays, in other words, convert the matrix of pixels of the glyphs into hexadecimal data.
Families of Fonts
ANSI FONTS
Generate GLCD Fonts from System Fonts ( Glyphs are not editable )
Open / create a Font Quit Font Script Mode
Directly select chars to convert to data inside the ASCII grid
UNICODE FONTS ( International Characters Sets )
Generate GLCD Fonts from Unicode System Fonts ( Glyphs are not editable )
Open / create a Font Quit Font Script Mode
EDITABLE FONTS ( Freely Editable Fonts )
Create glyphs from scratch or export Chars from a System Font ( Glyphs are editable )
List Editable Fonts Create Editable Font From Scratch
Quit Editable Font Script Mode
ANTI-ALIASED FONTS
Generate anti-aliased Fonts, except in monochrome, 8 and 16 colors modes
Other buttons related to Fonts
Create GLCD Font Data inside Text Editor
Export Selected Chars of a System Font to an Editable Font
Export the selected Char in the ASCII Grid to the WORK CANVAS
Bitmap2LCD is a software tool for programming small Graphic LCDs in embedded systems and a programmable text and graphic processing tool.
Bitmap2lcd generates GLCD FONTS from UNICODE and ANSI SYSTEM FONTS ( fonts currently installed in Windows ) and from EDITABLE FONTS, chars and symbols you can create yourself. Chars of a System Font can be exported to EDITABLE FONTS to be freely editable.
Font Chars can also be stretched. ( See below, the panel above the displayed Character A )
To Generate GLCD Font , ENTER and QUIT the Font Creation Mode, click the following buttons or the associated main menu items :
Reload / Create Font Script
ExitSpecial Mode > Exit Font Script
Generate the GLCD FONT DATA as defined in the FONT SCRIPT
Fig 1. At the left side, the FONT PANEL and and the right side, the FONT SCRIPT located in one of the TEXT EDITORS
Blue arrow : The FONT SCRIPT is NOT a directly editable script. The purple Parameters displayed are defined with all the other arrows shown on the above screenshot.
Yellow Arrow : Select the SYSTEM Font , the Font Size, ANSI or UNICODE Chars ( script > Font Script Filename, Type, Name and Size )
Orange Arrow: Select the chars to generate in the ASCII Grid. Selected Chars are displayed in Color Aqua Blue. To clear all the selected chars in one click, click the Aqua Blue <Clr> button in the bar of icons. ( script > Selected Chars List )
Red Arrow: Font Height and Width limitations. A the right side, you can change from FIXED to VARIABLELENGTH FONT. ( script > Font Size )
Green Arrow: Here you can move and frame all the chars in four directions. ( script > Font Size )
Purple Arrow: Here You select the direction of the GLCD Font data ( script > Font Orientation )
FONT SCRIPTS (blue arrow) are saved to disk as [.FSC] files, and can easily be reloaded from inside the FILE EXPLORER (fig 2.). There’s a dedicated FONTS Folder (red arrow) . The font files there are filtered.
Example of Generated GLCD DATA for monochrome Display (Fixed Length 5×7 Font, Vertical Data Output)
Bitmap2LCD is a tool for programming small Graphic LCDs in embedded systems and a programmable graphic and text processing tool.
Export Font Data to Binary File : Data Structure
Standard Edition , Update V4,0
When you export the Font Script to a Binary File, the data array is sent to the Hex Editor and saved as a .hex to Disk. ( For example for Data storage in EEprom )
Output + Settings Main Menu :
See below the data structure inside the Hex Editor.
In the following example the generated Font is Arial Unicode Size 10 , ANSI, Selected Chars are AB and C
Structure :
1st Line , red area 00 03 = Number of chars (decimal)
2nd Line, Character Info between 55 AA …. AA 55
00 01 Type of Font >> 0001 = ANSI >> 0002 = UNICODE >> 0003 Editable Font
00 36 Char Data Count (decimal)
00 10 Char Width (decimal)
00 18 Char Height (decimal)
00 2D Char ASCII ( Optional > ANSI, Editable font ) or Unicode Char Address (hex)
00 50 First Address Next Char (hex)
Blue Area = Char Pixels data
Green Area = Data Filler, Forces next Char to begin from line begin
Bitmap2LCD is a tool for programming small Graphic LCDs in embedded systems.
Update V3.9H
A simple data compression feature, for the output of GLCD data arrays is implemented in Bitmap2LCD
This function is only available for monochrome mode and 8 bit output format.
The 8 bit microcontrollers for price sensitive projects are circuits with often less onchip memory space than most of the 16 or 32 bit devices.
The target is to save as many as microcontroller flash memory as possible. As tables for full display patterns of for example a 128 x 64 dot matrix LCD need 1024 bytes each, the goal of this function was to save flash space for more code or graphics or just to reduce the overall flash capacity and therefore to sink the price of the MCU chip.
The microcontroller firmware has to be able to handle these tables with a special code, which decodes the compressed data. Processing time for decompression has to be allowed.
How does it work ?
Instead of only converting the black and white pixels found in the work canvas to a linear list of n bytes, with the data compression method explained here, the data array is split into two separate arrays in one single output file : one as usual for the data stream and another for the pointers of each data groups.
The basic concept of this compression is based on making groups of consecutive identical data bytes in the data array.
Consecutive identical byte chains, and consecutive different byte chains are handled, the goal here is to save data bytes when a consecutive identical byte chain is found. While the first pointer of a consecutive different bytes chain is a loss of one data byte stored as a pointer, a consecutive identical byte chain of 10 bytes is a win of 8 bytes, the data being written only once in the data array. The count of them is then stored in the pointer byte array part.
The maximum count of consecutive data, identical or different is limited to 127 ( pointer bits 6 to 0 ). If a data count in a group reaches 127, a new group is encoded.
The bit 7 of the pointer byte is the flag for the compression decoder. A 1 (high) is for a chain of identical data bytes, and a 0 (low) is for an chain of different data.
When data compression is active, Bitmap2LCD converts all data and shows the compression rate in the compression statistics at the end of the output file.
This method of compression shows different results in vertical or horizontal orientation conversion, it depends of the LCD graphic !
If possible, before to choose the LCD controller and its specific data orientation in Display RAM , you could try both orientations and compare the possible compression ratios.
In the Header Include file, the example script below shows how to setup the compression table information.
( It is an example for a GNU-C compiler for ATMEL AVR family )
Everything after the tag [&COMPRESSION] is a script information for the data compression function.
The tag [&CNAME] is replaced in the output table name, by the data array name
with an additional suffix _x ( For example : Newfile_x )
Bitmap2LCD is a tool for programming small Graphic LCDs in embedded systems and a programmable graphic and text processing tool.
Stretching A Font
Update V3.7c
In the Font Panel there is a small Panel for stretching a GLCD Font (blue Arrow) , in width or/and in Height with the possibility to shift the stretched chars along the Y axis.
The “Stretch” checkbox enables or disables the stretching.
This features works when generating a Font, in the font script special mode and when exporting a system font to an editable Font.
Let’s see how we can create an animation for small Graphic LCD ( Version 3.7C+ )
When in static mode , go to the animation tab and click the Enter Animation button The same button or the Special Mode Exit Button should later be used to exit from the animation mode back to the static mode. An animation will be saved as a standard GIF file.
When entered in animation mode, the canvas outline becomes dark gray (green arrow) sub-menu becomes accessible (red arrow) . The animation is a sequence built of frames. The “ghost image” of the previous frame can optionally be displayed, it is a visual help for correct placement of graphic items,
At the top you can read the number of the current frame (2) and the number of total frames in the animation (/2) (blue arrow)
In the animation menu , you can use the navigation buttons to move from a frames to another, move to the beginning or the end of the animation. You can play and stop the animation sequence. (orange arrow) An alternative is to use the page-up and page-down keyboard keys to move through the animation frames.
Addition of a new animation frame, copying current frame to then next new frame , deleting a frame as well as other animation management functions are located in the animation menu and at the right side of the work canvas (red arrow)
When the animation is done you can convert the frames in GLCD data in one go (green arrow)
With this animation made of 5 frames example, Bitmap2LCD produces 6 files : A clip unit file (the code in the editor) and the 3 frames as data files (orange arrow)
You can navigate and view these files with the next and previous buttons (red arrow)
Only selected part of the animation frames can be converted : Enable Display Paging Scheme Limits and then select the area to convert. Click conversion button to start data export as usual (green arrow)
In this example, 5 full frame size of data for a 128 x 128 pixel GLCD are converted (black arrow). If the “Auto-framing” option has been enabled in the configuration settings, an automatic framing of only the area of the changing pixels is made. Then the X and Y positions, the height and the width of the frame is reported inside the clip unit.
In the configuration settings window , find other animation settings on the “clip unit” panel.
In the monochromatic mode, in addition to then auto-framing, an animation output can optionally be “internally compressed” to generate reduced code size. ( read articles in the blog category GLCD Data compression )